Computational fluid dynamics (CFD) is a valuable asset for patient-specific cardiovascular-disease diagnosis and prognosis, but its high computational demands hamper its adoption in practice. Machine-learning methods that estimate blood flow in individual patients could accelerate or replace CFD simulation to overcome these limitations. In this work, we consider the estimation of vector-valued quantities on the wall of three-dimensional geometric artery models. We employ group-equivariant graph convolution in an end-to-end SE(3)-equivariant neural network that operates directly on triangular surface meshes and makes efficient use of training data. We run experiments on a large dataset of synthetic coronary arteries and find that our method estimates directional wall shear stress (WSS) with an approximation error of 7.6% and normalised mean absolute error (NMAE) of 0.4% while up to two orders of magnitude faster than CFD. Furthermore, we show that our method is powerful enough to accurately predict transient, vector-valued WSS over the cardiac cycle while conditioned on a range of different inflow boundary conditions. These results demonstrate the potential of our proposed method as a plugin replacement for CFD in the personalised prediction of hemodynamic vector and scalar fields.
translated by 谷歌翻译
个性化的3D血管模型对于心血管疾病患者的诊断,预后和治疗计划很有价值。传统上,这样的模型是用明确表示(例如网格和体素掩码)构建的,或隐式表示,例如径向基函数或原子(管状)形状。在这里,我们建议在可区分的隐式神经表示(INR)中以其签名距离函数(SDF)的零级集表示表面。这使我们能够用隐性,连续,轻巧且易于与深度学习算法集成的表示复杂的血管结构对复杂的血管结构进行建模。我们在这里通过三个实际示例证明了这种方法的潜力。首先,我们从CT图像中获得了腹主动脉瘤(AAA)的精确和水密表面,并显示出从表面上的200点出现的可靠拟合。其次,我们同时将嵌套的容器壁贴在一个没有交叉点的单个INR中。第三,我们展示了如何将3D模型的单个动脉模型平滑地混合到单个水密表面。我们的结果表明,INR是一种灵活的表示,具有微小互动注释和操纵复杂血管结构的潜力。
translated by 谷歌翻译
允许合成现实细胞形状的方法可以帮助生成训练数据集,以改善生物医学图像中的细胞跟踪和分割。细胞形状合成的深层生成模型需要对细胞形状进行轻巧和柔性表示。但是,通常使用体素的表示不适合高分辨率形状合成,而多边形网格在建模拓扑变化(例如细胞生长或有丝分裂)时具有局限性。在这项工作中,我们建议使用符号距离功能(SDF)的级别集来表示细胞形状。我们将神经网络优化为3D+时域中任何点的SDF值的隐式神经表示。该模型以潜在代码为条件,从而允许合成新的和看不见的形状序列。我们在生长和分裂的秀丽隐杆线虫细胞上进行定量和质量验证方法,并具有生长的复杂丝虫突起的肺癌细胞。我们的结果表明,合成细胞的形状描述符类似于真实细胞的形状,并且我们的模型能够在3D+时间内生成复杂细胞形状的拓扑合理序列。
translated by 谷歌翻译
颈动脉壳壁厚测量是监测动脉粥样硬化患者的重要步骤。这需要精确分割血管壁,即动脉的内腔和外壁之间的区域,在黑血磁共振(MR)图像中。对于语义分割的常用卷积神经网络(CNNS)是本任务的次优,因为它们的使用不保证连续的环形分割。相反,在这项工作中,我们将船舶壁分段作为极坐标系中的多任务回归问题。对于每个轴向图像切片中的每种颈动脉,我们的目的是同时发现两个非交叉的嵌套轮廓,在一起叠加血管壁。应用于此问题的CNNS使电感偏压能够保证环形血管壁。此外,我们确定了一个特定于问题的培训数据增强技术,其大大影响了分割性能。我们将我们的方法应用于内部和外部颈动脉壁的分割,并在公共挑战中实现排名级定量结果,即血管墙壁的中值骰子相似系数为0.813,中位Hausdorff距离为0.552 mm和0.776 mm对于内腔和外墙。此外,我们展示了如何通过传统的语义分割方法来改善方法。这些结果表明,可以高精度地自动获得颈动脉壁的解剖学似合子分割是可行的。
translated by 谷歌翻译
计算流体动力学(CFD)是一种有价值的工具,用于动脉中血流动力学的个性化,非侵入性评估,但其复杂性和耗时的大自然在实践中禁止大规模使用。最近,已经研究了利用深度学习进行CFD参数的快速估计,如表面网格上的壁剪切应力(WSS)。然而,现有方法通常取决于表面网格的手工制作的重新参数化以匹配卷积神经网络架构。在这项工作中,我们建议使用Mesh卷积神经网络,该网状神经网络直接在CFD中使用的相同的有限元表面网格操作。我们在使用从CFD模拟中获得的地面真理培训并在两种合成冠状动脉模型的两种数据集上培训和评估我们的方法。我们表明我们灵活的深度学习模型可以准确地预测该表面网上的3D WSS矢量。我们的方法在少于5分钟内处理新网格,始终如一地实现$ \ LEQ $ 1.6 [%]的标准化平均值误差,并且在保持测试集中的90.5 [%]中位近似精度为90.5 [%]的峰值,比较以前发表的工作。这证明了CFD代理建模的可行性,使用网状卷积神经网络进行动脉模型中的血流动力学参数估计。
translated by 谷歌翻译
The recent increase in public and academic interest in preserving biodiversity has led to the growth of the field of conservation technology. This field involves designing and constructing tools that utilize technology to aid in the conservation of wildlife. In this article, we will use case studies to demonstrate the importance of designing conservation tools with human-wildlife interaction in mind and provide a framework for creating successful tools. These case studies include a range of complexities, from simple cat collars to machine learning and game theory methodologies. Our goal is to introduce and inform current and future researchers in the field of conservation technology and provide references for educating the next generation of conservation technologists. Conservation technology not only has the potential to benefit biodiversity but also has broader impacts on fields such as sustainability and environmental protection. By using innovative technologies to address conservation challenges, we can find more effective and efficient solutions to protect and preserve our planet's resources.
translated by 谷歌翻译
We present the interpretable meta neural ordinary differential equation (iMODE) method to rapidly learn generalizable (i.e., not parameter-specific) dynamics from trajectories of multiple dynamical systems that vary in their physical parameters. The iMODE method learns meta-knowledge, the functional variations of the force field of dynamical system instances without knowing the physical parameters, by adopting a bi-level optimization framework: an outer level capturing the common force field form among studied dynamical system instances and an inner level adapting to individual system instances. A priori physical knowledge can be conveniently embedded in the neural network architecture as inductive bias, such as conservative force field and Euclidean symmetry. With the learned meta-knowledge, iMODE can model an unseen system within seconds, and inversely reveal knowledge on the physical parameters of a system, or as a Neural Gauge to "measure" the physical parameters of an unseen system with observed trajectories. We test the validity of the iMODE method on bistable, double pendulum, Van der Pol, Slinky, and reaction-diffusion systems.
translated by 谷歌翻译
While the brain connectivity network can inform the understanding and diagnosis of developmental dyslexia, its cause-effect relationships have not yet enough been examined. Employing electroencephalography signals and band-limited white noise stimulus at 4.8 Hz (prosodic-syllabic frequency), we measure the phase Granger causalities among channels to identify differences between dyslexic learners and controls, thereby proposing a method to calculate directional connectivity. As causal relationships run in both directions, we explore three scenarios, namely channels' activity as sources, as sinks, and in total. Our proposed method can be used for both classification and exploratory analysis. In all scenarios, we find confirmation of the established right-lateralized Theta sampling network anomaly, in line with the temporal sampling framework's assumption of oscillatory differences in the Theta and Gamma bands. Further, we show that this anomaly primarily occurs in the causal relationships of channels acting as sinks, where it is significantly more pronounced than when only total activity is observed. In the sink scenario, our classifier obtains 0.84 and 0.88 accuracy and 0.87 and 0.93 AUC for the Theta and Gamma bands, respectively.
translated by 谷歌翻译
Variational autoencoders model high-dimensional data by positing low-dimensional latent variables that are mapped through a flexible distribution parametrized by a neural network. Unfortunately, variational autoencoders often suffer from posterior collapse: the posterior of the latent variables is equal to its prior, rendering the variational autoencoder useless as a means to produce meaningful representations. Existing approaches to posterior collapse often attribute it to the use of neural networks or optimization issues due to variational approximation. In this paper, we consider posterior collapse as a problem of latent variable non-identifiability. We prove that the posterior collapses if and only if the latent variables are non-identifiable in the generative model. This fact implies that posterior collapse is not a phenomenon specific to the use of flexible distributions or approximate inference. Rather, it can occur in classical probabilistic models even with exact inference, which we also demonstrate. Based on these results, we propose a class of latent-identifiable variational autoencoders, deep generative models which enforce identifiability without sacrificing flexibility. This model class resolves the problem of latent variable non-identifiability by leveraging bijective Brenier maps and parameterizing them with input convex neural networks, without special variational inference objectives or optimization tricks. Across synthetic and real datasets, latent-identifiable variational autoencoders outperform existing methods in mitigating posterior collapse and providing meaningful representations of the data.
translated by 谷歌翻译
There are multiple scales of abstraction from which we can describe the same image, depending on whether we are focusing on fine-grained details or a more global attribute of the image. In brain mapping, learning to automatically parse images to build representations of both small-scale features (e.g., the presence of cells or blood vessels) and global properties of an image (e.g., which brain region the image comes from) is a crucial and open challenge. However, most existing datasets and benchmarks for neuroanatomy consider only a single downstream task at a time. To bridge this gap, we introduce a new dataset, annotations, and multiple downstream tasks that provide diverse ways to readout information about brain structure and architecture from the same image. Our multi-task neuroimaging benchmark (MTNeuro) is built on volumetric, micrometer-resolution X-ray microtomography images spanning a large thalamocortical section of mouse brain, encompassing multiple cortical and subcortical regions. We generated a number of different prediction challenges and evaluated several supervised and self-supervised models for brain-region prediction and pixel-level semantic segmentation of microstructures. Our experiments not only highlight the rich heterogeneity of this dataset, but also provide insights into how self-supervised approaches can be used to learn representations that capture multiple attributes of a single image and perform well on a variety of downstream tasks. Datasets, code, and pre-trained baseline models are provided at: https://mtneuro.github.io/ .
translated by 谷歌翻译